Compact Object Mergers: NS-NS and NS-BH as emitters of GW, EM, and ν s in the age of aLIGO, Virgo, and Kagra

NY Area Computational Astro Meeting, Farmingdale, NY

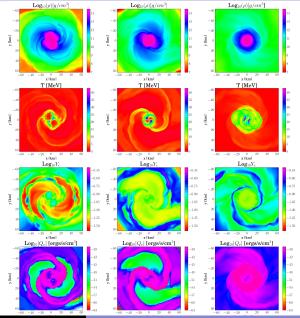
Steve Liebling Long term Collaborators:

Luis Lehner (Perimeter) David Neilsen (BYU) Carlos Palenzuela (U.B.-Spain)

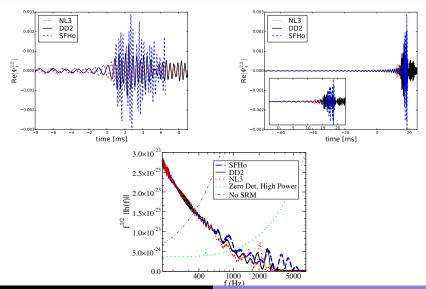
Long Island University, New York, USA

April 2015

Motivation

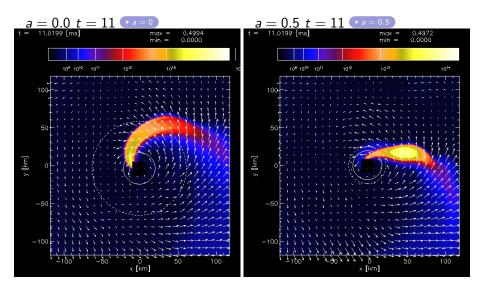

- Understand binary mergers better
 - as engines of sGRB
 - as sites of r-process nucleosynthesis (e.g. SGRB 130603B)
 - as drivers of kilonovae
- Understand dynamics generally:
 - jet production...Blandford-Znajek, etc
 - magnetic instabilities...Kelvin-Helmholtz, MRI, etc
- Extract as much science as possible from aLIGO wave detection/observation
 - Determine properties of NS EoS from GW
 - Find possible EM counterparts
 - Multimessenger astronomy via neutrino detection

- Computational
 - Parallel-to use many cores, processors, nodes
 - Adaptive–AMR to refine when and where needed
 - boundaries-good conditions or compactified, etc
- Dynamical Gravity
 - Track the binary components
 - Gravity plays a dynamical role...GR
 - Accurate wave-zone GW extraction/characterization
- Fluid
 - Astrophysical relevance demands matter
 - GR fluid w/ shocks
 - Realistic EOS
- Electromagnetism
 - Couplings to matter: MHD, electrovac, force-free, resistive
 - Connection of global EM-field to observation: PIC, etc
- Microphysics
 - Neutrino interactions-Leakage, Monte-Carlo, full Boltzmann
 - Photon-radiation hydrodynamics


effects of EoS on BNS merger

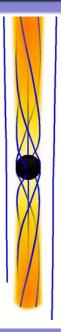
Equatorial Plane

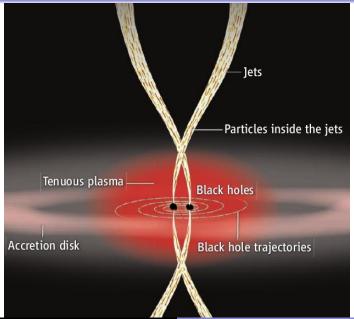
- Left—NL3
- Middle—DD2
- Right—SFHo

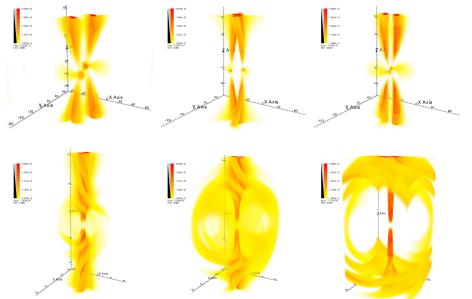


GW Waveforms

Neutrino Emission

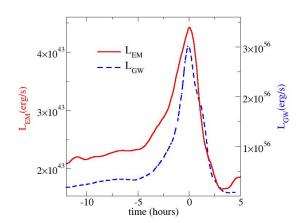

 Softest EoS most Q_{ν} [ergs/s] 10⁵⁴ luminous because 10⁵³ high temperature 1051 10⁵³ NL3 0.30 10⁵² DD2 NL3 DD2 SFHo 0.25 10^{50} SFHo 1054 $\Delta M/M_{
m bound}$ 0.20 10^{53} 10^{52} 0.1510⁵¹ 10⁵⁰ 0.10 10⁵⁴ 10^{53} 0.05 10⁵² 10⁵¹ 0.00 20 40 10 temperature [MeV] 2 8 time [ms]

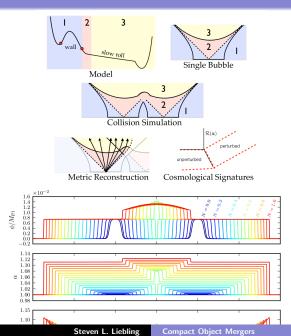



Blandford-Znajek Mechanism for Kerr BH

- orange shading—Poynting Flux
- blue lines-magnetic field lines
- Energy extracted:
 - ergoregion of Kerr BH drags field lines
 - tension on field lines propagates
 - Alfvén waves carry energy out

What happens when one relaxes assumption of axisymmetry and fixed metric?




BH-BH with Force Free

- (macroscopic)Poynting flux:
 - Collimated flux for each hole
 - Isometric output peaks at merger
- Electromagnetic luminosity drives radiative processes...unknown radiative efficiency
- EM flux mostly pre-merger as opposed to GW emission in final few hours

Other Interests

- Cosmology
 - Inflation (eternal, topological, bubble collisions)
- Nonlinear dynamics
 - Topological defects-monopoles, cosmic strings
 - Nonlinear wave equations & boson stars
 - Black Hole Critical Behavior
 - AdS-CFT Correspondence
- High Performance Computing
 - Techniques: AMR, Multigrid, domain decomposition
 - Heterogenous computing (GPGPU, Phi, Fusion, etc) w/ OpenCL and OpenAcc

